The Energy Infrastructure of the Future

Klaus Brun, Ph.D.
Director R&D, Elliott Group
Global Power and Propulsion Forum
January 2020

All figures courtesy of Elliott Group, Solar Turbines Inc., Southwest Research Institute, and General Electric
Elliott Group’s Global Manufacturing

Jeannette, PA (Pittsburgh USA)

- 110 Acre Campus
- 802,000 Sq. Ft Factory Area
- Organizational Center for 1000 Professional and Skilled Workers at Site

Sodegaura, Chiba (Tokyo, Japan)

- 41 Acre Campus
- 371,000 Sq. Ft Factory Area
- Organizational Center for 750 Professional and Skilled Employees
Turbomachinery Products

- Multistage centrifugal compressors
 - Axially split (M Series)
 - Vertically split (MB Series)
- Single stage centrifugal compressors
- Axial Compressors
- Hot gas expanders
- Special purpose steam turbines
- General purpose steam turbines
- Cryogenic Pumps
- Cryo Expanders
Connect the Energy Source with the Sink

- Sources of Energy
 - Fossil Fuel Production Sites (Coal, Natural Gas, and Liquids)
 - Alternative Energy Plants (Wind, Solar, and Hydro)
 - Nuclear Power Plants

- Intermediaries/Converters
 - Fossil Fuel Power Plants
 - Energy Storage

- Sinks
 - Industrial Electricity and Gas Users
 - Domestic Gas and Electricity Consumers
Energy Transportation and Storage Efficiency

Transport Losses per 100 miles:
• Electric Transmission Line: 1-10%
• Gas Pipeline: 0.1-0.3%
• Liquid Pipeline: 0.02-0.1%

Storage Losses (Roundtrip Efficiency Losses):
• Battery Storage: 5-10%
• Thermal-Mechanical Storage: 25-50%
• Gas Caverns/Tanks: 1-3%
• Liquid Tanks: 0%

Hydrocarbon Transport/Storage Is Far More Efficient Than Electricity Transport/Storage
Wind, Solar, Hydro Energy Transport

• Option A: Electric Transmission Lines with and without Storage
 • Advantage: No Carbon Footprint, No Energy Conversion Required
 • Disadvantage: High Transmission Losses

• Option B: Hydrogen Conversion And Gas Pipeline Gas Transport
 • Advantage: “Built-In Storage”, No Carbon Footprint, Some Existing Infrastructure
 • Disadvantage: High Conversion Losses (Electrolysis and Heat Engine)

• Option C: Liquid Conversion and Liquid Pipeline Transport
 • Advantage: “Built-In Storage”, Lowest Transportation Losses, Secondary Products
 • Disadvantage: High Conversion Losses, Not Necessarily Carbon Neutral, Lack of Existing Infrastructure

Balance Between Conversion Efficiency and Transportation Efficiency
Fossil Fuel Energy Transport

- **Option A: Pipeline or Rail Transport**
 - Advantages: Existing Infrastructure, No Storage Required, Low Transportation Losses
 - Disadvantage: High Conversion Losses, Not Carbon Neutral

- **Option B: Source De-Carbonization and Hydrogen Pipeline Transport**
 - Advantages: Carbon Sequestration, No Storage Required, Limited Infrastructure
 - Disadvantages: Hydrogen Transport Challenges, Conversion Losses

- **Option C: Pipeline or Rail Transport and Sink De-Carbonization**
 - Advantages: Carbon Sequestration, No Storage Required, Existing Infrastructure
 - Disadvantage: Conversion Losses

Pre-Transport De-Carbonization Is Least Viable Option
Gas or Power or Hydrogen to Liquids
Comparison of Reforming Processes

Reforming to produce syngas

\[\text{CO}_2 + \text{CO} + \text{H}_2 + \text{heat} \]

Ammonia Path

Methanol Path

GTL Diesel Path

Typically use Steam Methane Reformer or Auto-thermal Reformer.

Natural Gas Feed

Steam {& \ O_2}

\[\text{C}_n\text{H}_{2(n+2)}, \text{typ. Diesel and Naptha} \]

\[\text{CO}_2 \text{ Removal} \]

\[\text{Fischer-Tropsch Reaction} \]

\[\text{ASU, Add } \text{N}_2 \]

\[\text{Heat, } \text{H}_2\text{O} \]

\[\text{Polypropylene, Ethylene, Propylene, or gasoline} \]

\[\text{NH}_3 \]

\[\text{Cyrogenic Clean-up} \]

\[\text{NH}_3 + \text{impurities} \]

\[\text{ Reforming and Shift} \]

\[\text{CO}_2 \]

\[\text{Carbon Removal and Conversion} \]

\[\text{H}_2 \]

\[\text{Methanation} \]

\[\text{CH}_4 \text{O} \]

\[\text{Polypropylene Plant} \]

\[\text{Polypropylene, Ethylene, Propylene, or gasoline} \]

\[\text{N}_2 + \text{H}_2\text{O} \]
US Natural Gas Production

Plenty of Gas for Growth...and then some for LNG Export
Energy Costs – What it means to an economy!

2015 USA:
75 bcf/d consumption at $4.5/MMBTU

= 335 million Dollars per day
= 122 billion Dollars per year

≈ The price of 80-100 new large NGCC (750MW Each) power plants per year

Sources: World Bank and Citi Research
- 2.3 million miles of pipelines
- 850-900 mainline compressor stations, 800-900 booster stations (+15,000 gas gathering machines)
- Average age of pipeline compressors: 25-30 years
- Consume/lose about 2.5-3.5% of US NG = 0.7 tcf/y = 3-4 billion US Dollars per year

Minimum of 5,000,000 hp of Compression must be replaced in next 15 years on US pipelines.
Pipeline Compression Equipment Most Commonly Used

Gas Turbine Driven Centrifugal Compressor:
- Simple cycle gas turbine driver
- Direct drive compressor (6,000-20,000 rpm)
- Centrifugal compressor with 1-2 impeller stages

High Speed Separable Recip Compressor:
- Gas Engine driver
- Direct drive compressor (1200-1600 rpm)
- 2-4 double acting cylinder stages

Electric Motor Drive:
- Centrifugal and recip compressors
- With or without gearbox
- Fixed speed or variable speed (VFD)

All figures courtesy of Elliott Group, Solar Turbines Inc., Southwest Research Institute, and General Electric
Pipeline Compression Basic Efficiency Problem

• Driver Efficiency (GT, Engine, Motor): 25-40%
• Driven Equipment (Centrifugal, Recip): 75-90%
• Plant Losses (Bottles, Scrubbers, Filters): 2-5% (Losses)
• Off-Design Operation, Recycle : 0-70% (Losses)
• Leakage and Blowdown: 0-50% (Equivalent Efficiency Losses)

Total Average Compressor Station Efficiency is Always Well Below 20%.

All figures courtesy of Elliott Group, Solar Turbines Inc., Southwest Research Institute, and General Electric
Making Pipeline Compression More Efficient

<table>
<thead>
<tr>
<th>Approach</th>
<th>Possible Efficiency Gain</th>
<th>Funded R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Driver Efficiency</td>
<td>3-10%</td>
<td>OEM, DOE</td>
</tr>
<tr>
<td>Improve Driven Equipment Efficiency</td>
<td>2-5%</td>
<td>OEM</td>
</tr>
<tr>
<td>Add Recuperation</td>
<td>0-10%</td>
<td>OEM</td>
</tr>
<tr>
<td>Add Waste Heat Recovery</td>
<td>15-35%</td>
<td>DOE</td>
</tr>
<tr>
<td>Improve Balance of Plant Efficiency</td>
<td>1-5%</td>
<td>Users</td>
</tr>
<tr>
<td>Reduce Leakage</td>
<td>0-30%</td>
<td>OEM, DOE, Users</td>
</tr>
<tr>
<td>Avoid Blowdowns</td>
<td>0-10%</td>
<td>Users</td>
</tr>
<tr>
<td>Optimize Pipeline & Station Operation</td>
<td>0-30%</td>
<td>Users</td>
</tr>
</tbody>
</table>

Total US R&D Budget WAG:
- OEMs: $100-300M
- DOE: $50-150M
- Users: $20-60M
Efficiency Standards for Compressors

• 1975 Energy Policy and Conservation Act (EPCA)
 • Gives DOE broad powers to regulate efficiency requirements of consumer products and certain industrial equipment
 • List 11 types of equipment and allows the secretary of energy to add other types of equipment
 • Rules must be documented to be technically feasible, economically justified, and result in significant conservation of energy

• 2012 DOE issues Proposed Determination of Coverage for commercial and industrial compressors

• 2014 DOE issues Request for Information for compressor efficiency standards (includes natural gas compressors)

• 2014 DOE issues Framework Document (air compressors only)

• 2016 DOE issues Minimum Efficiency standards (Final Rule) for air compressors only

• 2017 Administration delays implementation of Final Rule

DOE has Authority to Regulate Oil & Gas Compressor Efficiencies
Future: Natural Gas Compressors

• Unlikely current administration will pursue rulemaking for natural gas compressor minimum efficiency standards

• EPA (both federal and state) can enforce efficiency limits in air permitting process (CO₂ emissions reduction). This is in litigation in several states.

• Current administration’s focus for oil & gas appears to be:
 • Energy independence
 • Improved production and distribution infrastructure
 • Supply reliability
 • Less focus on greenhouse gas emission reductions

Oil & Gas Industry Needs to Address Machinery Efficiency Requirements:
- There will be DOE or EPA rules (eventually)
- Some state EPAs already enforce new station efficiency requirements
- Improves operations economics
Thank You Very Much!

Questions?

Klaus Brun, Ph.D.
Director R&D
Elliott Group
Global Power And Propulsion Forum
January 2020